
Event-Driven
Systems on Azure
Done right

Robin Konrad
Enterprise & Solution Architect

Different architectural styles

3

Monolith Microservices

MONO MICRO

1. Decoupled Services

2. Communication

3. Fallacies of Distributed Computing

1. Single-tiered Application

2. UI, Logic, DataAccess combined

3. Deployed in one block

Event-Driven Architectures

4

In terms of a flavor of microservices

Event-driven architecture
(EDA) is a software
architecture paradigm
promoting the production,
detection, consumption of
and reaction to events.

Uses events to trigger and communicate
between decoupled services.

Consists of Producers, Routers and
Consumers

Producer and Consumer Services are loosly
coupled, can be scaled, updated and
deployed independently!

01

02

03

Advantage+
Disadvantage:
Scalable,
Resilience,
Flexible, but
increased
complexity,
event ordering,
lack of
transactionality,
monitoring.

Pattern – Different usings of Event (by Martin Fowler)…

5

Decouple different systems by notify about state changes using an Event.

Upstream systems produces events for each change, Downstream systems store events they
are interested in.

Using fine granular events to capture any change to the state of an application as an event
object.

Command Query Responsibility Segregation

Notification

Carried State
Transfer

Sourcing

CQRS

Different utilization of Event…

6

Using fine granular events
to capture any change to
the state of an application
as an event object.

Using domain events to
communicate between
decoupled systems.

Implementation Communication

No silver bullet!

Implementation Strategy

Communication Strategy

EDA What it is?

“A good developer is like a
werewolf: Afraid of silver

bullets.”
Jochen Mader

7

A lot of -ilities

8

Flexibility

Recoverability

Auditability

Resilience

Customizability

Modifiability

Fault-Tolerance

Reproducibility

Simplicity

Understand-
ability

Traceability

Stability

Degradability

Scalability

Effectiveness

Durability

Precision

Predictability

Testability

Responsiveness

Qualities – When to use Event-Driven Architectures

9

Qualities that are supporting Governance 6 Compliance topics like Auditability &
Traceability,supporting the choice to use EDAs

Scalability, Recoverability & Resilience are 1st class citizen of EDAs!

EDAs are eventual consistent!

EDAs are complex, you need matured teams to conquer the challenges!

Governance

Maintainability

Consistency

Be careful

it’s not used as a silver bullet!

Team is able to handle complexity!

-ilities make it affordable!

EDA only if…

“A good developer is like a
werewolf: Afraid of silver

bullets.”
Jochen Mader

10

Question

11

Do you already
get in touch with

Event-Driven
Architecture?

12

Query-Engine

Components overview of an EventSourcing system

13

Domain-Engine

Interfaces

Command
-Handling
(Execution)

EventStore

Transport Projection
(Execution)

Query
(Execution)

ReadModel

Command
API Event API Query API

Shared

Logging & Monitoring

Security

GDPR

Testing

Documentation

ReadModels

14

ReadModels are mostly stored in relational
databases.

Possible solution on Azure:

› Azure SQL Database (serverless compute
tier)

Ups & Downs

15

Consumption based and serverless are mostly
the go-to option for cost optimization

Down-Side

› Auto-Scale must be configured properly
› Auto-Pausing and Auto-Resume can lead to

unexpected behavior on consumer-side

Solution:

› Collect usage data and adjust scaling to it
› Avoid Auto-Pausing if it’s causing a lot of

trouble, but keep load as small as possible
to do so

EventStore

16

EventStores can be easily implemented with
object storages.

Possilbe solution on Azure:

› Azure Cosmos DB

Query Problem

17

Querying Azure Cosmos DB can be expensive, if
you don’t care about partioning.

Identity of Aggregate is mostly a good choice

Querying only one partion at a time is really
cheap!

Take also care about

18

Change Feed Listener of Azure Cosmos DB can
be used to implement the Out-Box-Pattern

Be carefull

› Use replication for resilience
› Right indexing strategy is a key to good

performance
› Keep Azure Cosmos Db as small as possible

Out-Box-Pattern made easy

19

Change Feed Listener to implement Out-Box-
Pattern and reduce complexity.

Advantages

› Right settings for scaling avoids messing up
event ordering

› Forward stored events to an Azure Service
Bus Topic or an Azure Event Hub Partition

› Events emitted by the Change Feed Listener
can be archived to keep Cosmos Db at a
valuable size

Pitfalls on EventStores

20

Apache Kafka does not exist to be used as
Event Store!

Good solution for event-streaming @ scale

But don’t underestimate operations and
consumptions!

Apache Kafka is an open-source
distributed event streaming
platform used by thousands of
companies for high-
performance data pipelines,
streaming analytics, data
integration, and mission-critical
applications.

(Source: https://kafka.apache.org/)

Transport

21

Transport of emitted events can get hard in
terms of message ordering and filtering

Possible solutions on Azure for transporting
events:
› Azure Service Bus
› Azure Event Grid
› Azure Event Hub
› Azure Storage Queues

Message ordering isn’t easy

22

Message Ordering isn’t guaranteed in most
services

Only solution:

› Azure Service Bus

Use Topics

23

Use Topics to enable multiple subscribers to
your event stream

Use SQL-Style filtering to filter on subscription
level

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-
topics-subscriptions

Use Sessions

24

Use Sessions to guarantee message ordering!

https://learn.microsoft.com/en-us/azure/service-bus-messaging/message-sessions

But be careful

› Choose the right SessionId to avoid too
small or too big sessions.

› Identity of Aggregate is mostly a good
choice.

Execution

25

Execution of business logic can be easily done
one Azure!

Solution of choice

› Azure Functionsç

Falling a sleep or not

26

Azure Functions are not pre-warmed if you’re
not using Premium Tier.

Using Time-Trigger to keep them awake

Build in Trigger & Bindings

27

https://www.grapecity.com/blogs/an-introduction-to-azure-functions

Azure Functions provide a wide set of default
Trigger & Bindings.

Default Trigger & Bindings are not optimized
for performance.

Write custom Trigger & Bindings if you need to
handle @ scale.

https://www.grapecity.com/blogs/an-introduction-to-azure-functions

Scaling execution

28

Azure Functions doing a great job on scaling!

Analyze frequently using Application Insights
to gather the right settings

AI can help you to auto detect common pattern
for peaks and adjust scale-settings.

Logging

29

Getting a full overview of the system state and
it’s containing operations is essential.

Solution of choice

› Application Insights

Expenses

30

Application Insights can really let explode your
costs!

Be careful what you log, in best case use
dynamic distributed settings about log-level.

Choose wisely on Retention Period

Interfaces

31

All requests to reach any API of your solution
should have one manageable entry point!

Various advantages

Solution of choice

› Azure API Management Services

› Analyze usage
› Providing different sets of functionalities to

different consumers
› Securing your solution

Documentation

32

Distribution of various information is a key
success factor!

Possible solution
› Using easy to access solutions
› OpenAPI Definition
› AsyncAPI
› EventCatalog.dev

Event-Definition, How-To Consume / Subscribe,
Domain knowledge, Expectations

Testing & Debugging

33

Event-Driven Architectures are hard to debug
and test! Use abstraction wherever possible!

Satisfied by:
› Use a correlation Id in every call you do!
› Abstract as much as meaningful within your

code
› Heavily use IaC to deploy independ test

environments for each run!
› Go BDD -> SpecFlow as solution! Early,

execute frequently.
› Do CDCT, every single time!

Security

34

Securing distributed systems can be hard!

Security is always a First Class Citizen!
› Use Service Principals and managed

identities every time possible!
› Use Azure KeyVault to store secrets!
› Secure every call within the module /

service / component!

GDPR

35

Handling of GDPR relevant information can be
hard in EDAs, specially if storing events.

Possible solution
› Only distribute events to notify about a

state change
› Distribute hydrated events & encrypt

sensitive fields

Keep an eye on consumption!

Use the right tool for the job!

Choose services wisely!

Wrap up!

“A good developer is like a
werewolf: Afraid of silver

bullets.”
Jochen Mader

36

Thank you

38

Blog : https://robinkonrad.de

Twitter : @robin_Konrad_

GitHub : @robinkonrad

LinkedIn : https://www.linkedin.com/in/robin-konrad/

Let‘s
connect

https://robinkonrad.de

@robin_konrad_

@robinkonrad

Robin Konrad
Enterprise Architect

Solution Architect

https://www.linkedin.com/in/robin-konrad
rkonrad@xpirit.com

https://www.linkedin.com/in/robin-konrad

